Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 26

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (x4) 225(y+1) 216=1\frac { ( x - 4 ) ^ { 2 } } { 25 } - \frac { ( y + 1 ) ^ { 2 } } { 16 } = 1


A) center at (4,1) ( 4 , - 1 )
transverse axis is parallel to xx -axis
vertices at (0,1) ( 0 , - 1 ) and (8,1) ( 8 , - 1 )
foci at (441,1) ( 4 - \sqrt { 41 } , - 1 ) and (4+41,1) ( 4 + \sqrt { 41 } , - 1 )
asymptotes of y+1=54(x4) y + 1 = - \frac { 5 } { 4 } ( x - 4 ) and y+1=54(x4) y + 1 = \frac { 5 } { 4 } ( x - 4 )

B) center at (1,4) ( - 1,4 )
transverse axis is parallel to xx -axis
vertices at (6,4) ( - 6,4 ) and (4,4) ( 4,4 )
foci at (141,4) ( - 1 - \sqrt { 41 } , 4 ) and (1+41,4) ( - 1 + \sqrt { 41 } , 4 )
asymptotes of y4=45(x+1) y - 4 = - \frac { 4 } { 5 } ( x + 1 ) and y4=45(x+1) y - 4 = \frac { 4 } { 5 } ( x + 1 )

C) center at (4,1) ( 4 , - 1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (4,6) ( 4 , - 6 ) and (4,4) ( 4,4 )
foci at (4,141) ( 4 , - 1 - \sqrt { 41 } ) and (4,1+41) ( 4 , - 1 + \sqrt { 41 } )
asymptotes of y1=54(x+4) y - 1 = - \frac { 5 } { 4 } ( x + 4 ) and y1=54(x+4) y - 1 = \frac { 5 } { 4 } ( x + 4 )

D) center at (4,1) ( 4 , - 1 )
transverse axis is parallel to xx -axis
vertices at (1,1) ( - 1 , - 1 ) and (9,1) ( 9 , - 1 )
foci at (441,1) ( 4 - \sqrt { 41 } , - 1 ) and (4+41,1) ( 4 + \sqrt { 41 } , - 1 )
asymptotes of y+1=45(x4) y + 1 = - \frac { 4 } { 5 } ( x - 4 ) and y+1=45(x4) y + 1 = \frac { 4 } { 5 } ( x - 4 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions