Solved

Graph the Hyperbola (0,4)( 0,4 ) And Then Moves Closer and Closer to the Line

Question 98

Multiple Choice

Graph the hyperbola.
-A satellite following the hyperbolic path shown in the picture turns rapidly at (0,4) ( 0,4 ) and then moves closer and closer to the line y=85×y = \frac { 8 } { 5 } \times as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at (0,0) ( 0,0 ) .
 Graph the hyperbola. -A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,4 )   and then moves closer and closer to the line  y = \frac { 8 } { 5 } \times  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at  ( 0,0 )  .    A)   \frac { y ^ { 2 } } { \frac { 25 } { 4 } } - \frac { x ^ { 2 } } { 16 } = 1  B)   \frac { x ^ { 2 } } { \left( \frac { 12 } { 5 } \right)  ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1  C)   \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 16 } { 5 } \right)  ^ { 2 } } = 1  D)   \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 4 } } = 1


A) y2254x216=1\frac { y ^ { 2 } } { \frac { 25 } { 4 } } - \frac { x ^ { 2 } } { 16 } = 1
B) x2(125) 2y29=1\frac { x ^ { 2 } } { \left( \frac { 12 } { 5 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1
C) x216y2(165) 2=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 16 } { 5 } \right) ^ { 2 } } = 1
D) y216x2254=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 4 } } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions