Solved

Rotate the Axes So That the New Equation Contains No xy+16=0\mathrm { xy } + 16 = 0

Question 145

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati
- xy+16=0\mathrm { xy } + 16 = 0


A) θ=45\theta = 45 ^ { \circ }
y232+x232=1\frac { y ^ { \prime 2 } } { 32 } + \frac { x ^ { \prime 2 } } { 32 } = 1
ellipse
center at (0,0) ( 0,0 )
major axis is yy ^ { \prime } -axis
vertices at (0,±42) ( 0 , \pm 4 \sqrt { 2 } )

B) θ=45\theta = 45 ^ { \circ }
y232x232=1\frac { y ^ { \prime 2 } } { 32 } - \frac { x ^ { \prime 2 } } { 32 } = 1
hyperbola
center at (0,0) ( 0,0 )
transverse axis is yy ^ { \prime } -axis
vertices at (0,±42) ( 0 , \pm 4 \sqrt { 2 } )

C) θ=45\theta = 45 ^ { \circ }
y2=32xy ^ { \prime 2 } = - 32 x ^ { \prime }
parabola
vertex at (0,0) ( 0,0 )
focus at (8,0) ( - 8,0 )

D) θ=36.9\theta = 36.9 ^ { \circ }
x24+y22=1\frac { x ^ { \prime 2 } } { 4 } + \frac { y ^ { \prime 2 } } { 2 } = 1
ellipse
center at (0,0) ( 0,0 )
major axis is the xx ^ { \prime } -axis
vertices at (±2,0) ( \pm 2,0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions