Solved

Rotate the Axes So That the New Equation Contains No x2+xy+y23y6=0x^{2}+x y+y^{2}-3 y-6=0

Question 120

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati
- x2+xy+y23y6=0x^{2}+x y+y^{2}-3 y-6=0


A)
θ=45y2=18x parabola  vertex at (0,0)  focus at (92,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-18 x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }\left(-\frac{9}{2}, 0\right) \end{array}

B)
θ=45\theta=45^{\circ}
(x22) 25+(y322) 215=1\frac{\left(x^{\prime}-\frac{\sqrt{2}}{2}\right) ^{2}}{5}+\frac{\left(y^{\prime}-\frac{3 \sqrt{2}}{2}\right) ^{2}}{15}=1
ellipse
center at (22,322) \left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)
major axis is y y^{\prime} -axis
vertices at (22,322) \left(\frac{\sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right) and (22,923) \left(\frac{\sqrt{2}}{2}, \frac{9 \sqrt{2}}{3}\right)

C)
θ=45x26y28=1\begin{array}{l}\theta=45^{\circ} \\\frac{x^{2}}{6}-\frac{y^{\prime 2}}{8}=1\end{array}
hyperbola
center at (0,0) (0,0)
transverse axis is the x x^{\prime} -axis
vertices at (±6,0) (\pm \sqrt{6}, 0)

D)
θ=45x23+y24=1 ellipse  center at (0,0)  major axis is y-axis  vertices at (0,±2) \begin{array}{l}\theta=45^{\circ} \\\frac{x^{2}}{3}+\frac{y^{\prime 2}}{4}=1 \\\text { ellipse } \\\text { center at }(0,0) \\\text { major axis is } y^{\prime} \text {-axis } \\\text { vertices at }(0, \pm 2) \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions