Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates r=6cosθr=6 \cos \theta

Question 203

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- r=6cosθr=6 \cos \theta
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)      (x-3) ^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)    in rectangular coordinates  B)      x^{2}+(y+3) ^{2}=9 ;   circle, radius 3  center at   (0,-3)    in rectangular coordinates  C)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)    in rectangular coordinates  D)       \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9  ; circle, radius 3 ,  center at   (0,3)    in rectangular coordinates
A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)      (x-3) ^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)    in rectangular coordinates  B)      x^{2}+(y+3) ^{2}=9 ;   circle, radius 3  center at   (0,-3)    in rectangular coordinates  C)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)    in rectangular coordinates  D)       \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9  ; circle, radius 3 ,  center at   (0,3)    in rectangular coordinates
(x3) 2+y2=9; (x-3) ^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (3,0) in rectangular coordinates

B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)      (x-3) ^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)    in rectangular coordinates  B)      x^{2}+(y+3) ^{2}=9 ;   circle, radius 3  center at   (0,-3)    in rectangular coordinates  C)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)    in rectangular coordinates  D)       \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9  ; circle, radius 3 ,  center at   (0,3)    in rectangular coordinates
x2+(y+3) 2=9; x^{2}+(y+3) ^{2}=9 ; circle, radius 3
center at (0,3) (0,-3) in rectangular coordinates

C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)      (x-3) ^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)    in rectangular coordinates  B)      x^{2}+(y+3) ^{2}=9 ;   circle, radius 3  center at   (0,-3)    in rectangular coordinates  C)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)    in rectangular coordinates  D)       \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9  ; circle, radius 3 ,  center at   (0,3)    in rectangular coordinates
(x+3) 2+y2=9 (x+3) ^{2}+y^{2}=9 ; circle, radius 3 ,
center at (3,0) (-3,0) in rectangular coordinates

D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)      (x-3) ^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)    in rectangular coordinates  B)      x^{2}+(y+3) ^{2}=9 ;   circle, radius 3  center at   (0,-3)    in rectangular coordinates  C)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)    in rectangular coordinates  D)       \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9  ; circle, radius 3 ,  center at   (0,3)    in rectangular coordinates

x2+(y3) 2=9 \mathrm{x}^{2}+(\mathrm{y}-3) ^{2}=9 ; circle, radius 3 ,
center at (0,3) (0,3) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions