Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates θ=π3\theta = \frac { \pi } { 3 }

Question 264

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- θ=π3\theta = \frac { \pi } { 3 }
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)      y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)      y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)      y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)      \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)    in rectangular coordinates
A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)      y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)      y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)      y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)      \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)    in rectangular coordinates
y=3x y=\sqrt{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)      y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)      y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)      y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)      \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)    in rectangular coordinates
y=33x y=-\frac{\sqrt{3}}{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)      y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)      y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)      y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)      \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)    in rectangular coordinates
y=π3 y=-\frac{\pi}{3} ; horizontal line π3 \frac{\pi}{3} units
below the pole

D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)      y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)      y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)      y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)      \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)    in rectangular coordinates
(xπ3) 2+y2=π29; \left(x-\frac{\pi}{3}\right) ^{2}+y^{2}=\frac{\pi^{2}}{9} ; circle, radius π3 \frac{\pi}{3}
center at (π3,0) \left(\frac{\pi}{3}, 0\right) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions