Solved

Solve the Problem v=5255i+2655jv = \frac { 52 } { 5 } \sqrt { 5 } i + \frac { 26 } { 5 } \sqrt { 5 } j \quad

Question 91

Multiple Choice

Solve the problem.
-Find a vector v whose magnitude is 26 and whose component in the i direction is twice the component in the j direction. A) v=5255i+2655jv = \frac { 52 } { 5 } \sqrt { 5 } i + \frac { 26 } { 5 } \sqrt { 5 } j \quad or v=5255i2655j\quad \mathbf { v } = - \frac { 52 } { 5 } \sqrt { 5 } i - \frac { 26 } { 5 } \sqrt { 5 } \mathbf { j }

B) v=111010i331010jv = \frac { 11 } { 10 } \sqrt { 10 } i - \frac { 33 } { 10 } \sqrt { 10 } j \quad or v=111010i+331010j\quad v = - \frac { 11 } { 10 } \sqrt { 10 } i + \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

C) v=331010i+111010jv = - \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=331010i111010j\quad \mathbf { v } = \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j }

D) v=111010i+331010jv = \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 33 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=111010i331010j\quad \mathbf { v } = - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions