Solved

Solve the Problem θr\theta _ { \mathrm { r } }

Question 248

Essay

Solve the problem.
-When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence θr\theta _ { \mathrm { r } } is the angle in the first medium; the angle of refraction θr\theta _ { \mathrm { r } } is the second medium. (See illustration.) Each medium has an index of refraction ni- \mathrm { n } _ { \mathrm { i } } and nr\mathrm { n } _ { \mathrm { r } } , respectively -which can be found in tables. Snell's law relates these quantities in the forr
nisinθi=nrsinθr\mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } }
Solving for θr\theta _ { \mathbf { r } } , we obtain
θr=sin1(ninrsinθi)\theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right)
Find θr\theta _ { \mathrm { r } } for air (ni=1.0003)\left( \mathrm { n } _ { \mathrm { i } } = 1.0003 \right) , methylene iodide (nr=1.74)\left( \mathrm { n } _ { \mathrm { r } } = 1.74 \right) , and θi=14.7\theta _ { \mathrm { i } } = 14.7 ^ { \circ } .


 Solve the problem. -When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence  \theta _ { \mathrm { r } }  is the angle in the first medium; the angle of refraction  \theta _ { \mathrm { r } }  is the second medium. (See illustration.) Each medium has an index of refraction  - \mathrm { n } _ { \mathrm { i } }  and  \mathrm { n } _ { \mathrm { r } } , respectively -which can be found in tables. Snell's law relates these quantities in the forr  \mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } }  Solving for  \theta _ { \mathbf { r } } , we obtain  \theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right)  Find  \theta _ { \mathrm { r } }  for air  \left( \mathrm { n } _ { \mathrm { i } } = 1.0003 \right) , methylene iodide  \left( \mathrm { n } _ { \mathrm { r } } = 1.74 \right) , and  \theta _ { \mathrm { i } } = 14.7 ^ { \circ } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions