Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=46x+5f ( x ) = \frac { 4 } { 6 x + 5 }

Question 346

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =46x+5f ( x ) = \frac { 4 } { 6 x + 5 }


A) f(x) :D={xx23},R={yy45}f ( x ) : D = \left\{ x \mid x \neq \frac { 2 } { 3 } \right\} , R = \left\{ y \mid y \neq \frac { 4 } { 5 } \right\} ;
f1(x) :D={xx45},R={yy23}f ^ { - 1 } ( x ) : D = \left\{ x \mid x \neq \frac { 4 } { 5 } \right\} , R = \left\{ y \mid y \neq \frac { 2 } { 3 } \right\}

B) f(x) :D={xx56}R={yy5}f ( x ) : D = \left\{ x \mid x \neq \frac { 5 } { 6 } \right\} R = \{ y \mid y \neq - 5 \} ;
f1(x) :D={xx5,R={yy56}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \left\{ \mathrm { x } | \mathrm { x } \neq - 5 \rangle , R = \left\{ \mathrm { y } \mid \mathrm { y } \neq \frac { 5 } { 6 } \right\} \right.

C) f(x) f ( x ) : DD is all real numbers, RR is all real number:
f1(x) \mathrm { f } ^ { - 1 } ( \mathrm { x } ) : D\mathrm { D } is all real numbers, RR is all real numbe

D) f(x) :D={xx56},R={yy0}f ( x ) : D = \left\{ x \mid x \neq - \frac { 5 } { 6 } \right\} , R = \{ y \mid y \neq 0 \}
f1(x) :D={xx0},R={yy56}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \{ \mathrm { x } \mid \mathrm { x } \neq 0 \} , \mathrm { R } = \left\{ \mathrm { y } \mid \mathrm { y } \neq - \frac { 5 } { 6 } \right\} ;

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions