Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=5x+4f ( x ) = \sqrt { 5 x + 4 }

Question 491

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =5x+4f ( x ) = \sqrt { 5 x + 4 }


A) f(x) :D={xx45},R={yy0}f ( x ) : D = \left\{ x \mid x \geq - \frac { 4 } { 5 } \right\} , R = \{ y \mid y \geq 0 \} ;
f1(x)  : D is all real numbers, R={yy45}\mathrm{f}^{-1}(\mathrm{x}) \text { : } \mathrm{D} \text { is all real numbers, } \mathrm{R}=\left\{\mathrm{y} \mid \mathrm{y} \geq-\frac{4}{5}\right\}

B) f(x) :D={xx45},R={yy0}f1(x) :D={xx0},R={yy45}\begin{array}{l}f(x) : D=\left\{x \mid x \geq-\frac{4}{5}\right\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \geq-\frac{4}{5}\right\}\end{array}


C) f(x) :D={xx45},R \mathrm{f}(\mathrm{x}) : \mathrm{D}=\left\{\mathrm{x} \mid \mathrm{x} \geq-\frac{4}{5}\right\}, \mathrm{R} is all real numbers; f1(x) \mathrm{f}^{-1}(\mathrm{x}) : D is all real numbers, R={yy45} \mathrm{R}=\left\{\mathrm{y} \mid \mathrm{y} \geq-\frac{4}{5}\right\}

D) f(x) :D={xx0},R={yy0}f1(x) :D={xx0},R={yy45}\begin{array}{l}f(x) : D=\{x \mid x \geq 0\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \geq-\frac{4}{5}\right\}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions