Solved

For the Polynomial, List Each Real Zero and Its Multiplicity f(x)=2(x2+1)(x2+6)2f ( x ) = 2 \left( x ^ { 2 } + 1 \right) \left( x ^ { 2 } + 6 \right) ^ { 2 }

Question 34

Multiple Choice

For the polynomial, list each real zero and its multiplicity. Determine whether the graph crosses or touches the x-axis at
each x -intercept.
- f(x) =2(x2+1) (x2+6) 2f ( x ) = 2 \left( x ^ { 2 } + 1 \right) \left( x ^ { 2 } + 6 \right) ^ { 2 }


A) No real zeros
B) 1- 1 , multiplicity 1 , touches xx -axis; 6- 6 , multiplicity 2 , crosses xx -axis
C) 1 , multiplicity 1 , crosses xx -axis; 1- 1 , multiplicity 1 , crosses xx -axis; 6\sqrt { 6 } , multiplicity 2 , touches xx -axis; 6- \sqrt { 6 } , multiplicity 2 , touches xx -axis
D) 1- 1 , multiplicity 1 , crosses xx -axis; 6- 6 , multiplicity 2 , touches xx -axis

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions