Solved

Solve the Inequality 8k+12| 8 k + 1 | \geq 2

Question 89

Multiple Choice

Solve the inequality. Express your answer using interval notation. Graph the solution set.
- 8k+12| 8 k + 1 | \geq 2
 Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2     A)   \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)      B)   \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)      C)   \left[\frac{1}{8}, \infty\right)      D)   \left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]


A) (38,18) \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)
 Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2     A)   \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)      B)   \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)      C)   \left[\frac{1}{8}, \infty\right)      D)   \left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]

B) (,38][18,) \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)
 Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2     A)   \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)      B)   \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)      C)   \left[\frac{1}{8}, \infty\right)      D)   \left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]

C) [18,) \left[\frac{1}{8}, \infty\right)
 Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2     A)   \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)      B)   \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)      C)   \left[\frac{1}{8}, \infty\right)      D)   \left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]

D) [38,18]\left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]
 Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2     A)   \left( - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right)      B)   \left( - \infty , - \frac { 3 } { 8 } \right] \cup \left[ \frac { 1 } { 8 } , \infty \right)      C)   \left[\frac{1}{8}, \infty\right)      D)   \left[ - \frac { 3 } { 8 } , \frac { 1 } { 8 } \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions