Solved

For the Given Functions F and G, Find the Requested f(x)=2x+5;g(x)=6x1f ( x ) = 2 x + 5 ; g ( x ) = 6 x - 1

Question 90

Multiple Choice

For the given functions f and g, find the requested function and state its domain.
- f(x) =2x+5;g(x) =6x1f ( x ) = 2 x + 5 ; g ( x ) = 6 x - 1
Find fg\frac { f } { g } .


A) (fg) (x) =2x+56x1;{xx16}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 2 \mathrm { x } + 5 } { 6 \mathrm { x } - 1 } ; \left\{ \mathrm { x } \mid \mathrm { x } \neq \frac { 1 } { 6 } \right\}
B) (fg) (x) =2x+56x1;{xx52}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 2 \mathrm { x } + 5 } { 6 \mathrm { x } - 1 } ; \left\{ \mathrm { x } \mid \mathrm { x } \neq - \frac { 5 } { 2 } \right\}
C) (fg) (x) =6x12x+5;{xx52}\left( \frac { f } { g } \right) ( x ) = \frac { 6 x - 1 } { 2 x + 5 } ; \left\{ x \mid x \neq - \frac { 5 } { 2 } \right\}
D) (fg) (x) =6x12x+5;{xx16}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 6 \mathrm { x } - 1 } { 2 \mathrm { x } + 5 } ; \left\{ \mathrm { x } \mid \mathrm { x } \neq \frac { 1 } { 6 } \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions