Solved

For the Given Functions F and G, Find the Requested f(x)=x;g(x)=5x2f ( x ) = \sqrt { x } ; g ( x ) = 5 x - 2

Question 61

Multiple Choice

For the given functions f and g, find the requested function and state its domain.
- f(x) =x;g(x) =5x2f ( x ) = \sqrt { x } ; g ( x ) = 5 x - 2
Find fg\frac { f } { g } .


A) (fg) (x) =x5x2;{xx0}\left( \frac { f } { g } \right) ( x ) = \frac { \sqrt { x } } { 5 x - 2 } ; \{ x \mid x \neq 0 \}
B) (fg) (x) =x5x2;{xx0,x25}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 5 \mathrm { x } - 2 } ; \left\{ \mathrm { x } \mid \mathrm { x } \geq 0 , \mathrm { x } \neq \frac { 2 } { 5 } \right\}
C) (fg) (x) =x5x2;{xx25}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 5 \mathrm { x } - 2 } ; \left\{ \mathrm { x } \mid \mathrm { x } \neq \frac { 2 } { 5 } \right\}
D) (fg) (x) =5x2x;{xx0}\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 5 \mathrm { x } - 2 } { \sqrt { \mathrm { x } } } ; \{ \mathrm { x } \mid \mathrm { x } \geq 0 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions