Solved

Find and Simplify the Difference Quotient of F f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h }

Question 10

Multiple Choice

Find and simplify the difference quotient of f, f(x+h) f(x) h\frac { f ( x + h ) - f ( x ) } { h } h0\mathbf { h } \neq 0 , for the function.
- Find and simplify the difference quotient of f,  \frac { f ( x + h )  - f ( x )  } { h }   \mathbf { h } \neq 0  , for the function. -  A)  function domain: all real numbers range:   \{y \mid y \leq-2   or   y \geq 2\}   intercepts:   (-2,0) ,(2,0)    symmetry:   y  -axis    \[\begin{array} { l l }   B)  function domain: \( \{x \mid-2 \leq x \leq 2\} \)  range: all real numbers intercepts: \( (-2,0) ,(2,0)  \)  symmetry: \( \mathrm{x} \) -axis, \( y \) -axis  C)  function domain: \( \{x \mid x \leq-2 \)  or \( x \geq 2\} \)  range: all real numbers intercepts: \( (-2,0) ,(2,0)  \)  symmetry: \( \mathrm{x} \) -axis, \( \mathrm{y} \) -axis, origirn  D)  \(\text { not a function }\)    A)
function
domain: all real numbers
range: \( \{y \mid y \leq-2 \) or \( y \geq 2\} \)
intercepts: \( (-2,0) ,(2,0) \)
symmetry: \( y \) -axis\[\begin{array} { l l }

B)
function
domain: \( \{x \mid-2 \leq x \leq 2\} \)
range: all real numbers
intercepts: \( (-2,0) ,(2,0) \)
symmetry: \( \mathrm{x} \) -axis, \( y \) -axis

C)
function
domain: \( \{x \mid x \leq-2 \) or \( x \geq 2\} \)
range: all real numbers
intercepts: \( (-2,0) ,(2,0) \)
symmetry: \( \mathrm{x} \) -axis, \( \mathrm{y} \) -axis, origirn

D)
\(\text { not a function }\)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions