Solved

Find and Simplify the Difference Quotient of F f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h }

Question 250

Multiple Choice

Find and simplify the difference quotient of f, f(x+h) f(x) h\frac { f ( x + h ) - f ( x ) } { h } h0\mathbf { h } \neq 0 , for the function.
- Find and simplify the difference quotient of f,  \frac { f ( x + h )  - f ( x )  } { h }   \mathbf { h } \neq 0  , for the function. -  A)   \begin{array}{l} \text { function } \\ \text { domain: }\{x \mid x>0\} \\ \text { range: all real numbers } \\ \text { intercept: }(1,0)  \\ \text { symmetry: none } \end{array}   B)   \begin{array}{l} \text { function } \\ \text { domain: all real number: } \\ \text { range: }\{\mathrm{y} \mid \mathrm{y}>0\} \\ \text { intercept: }(1,0)  \\ \text { symmetry: none } \end{array}   C)   \begin{array}{l} \text { function } \\ \text { domain: }\{x \mid x>0\} \\ \text { range: all real number } \\ \text { intercept: }(0,1)  \\ \text { symmetry: origin } \end{array}   D)  \text { not a function }    A)
 function  domain: {xx>0} range: all real numbers  intercept: (1,0)  symmetry: none \begin{array}{l}\text { function } \\\text { domain: }\{x \mid x>0\} \\\text { range: all real numbers } \\\text { intercept: }(1,0) \\\text { symmetry: none }\end{array}

B)
 function  domain: all real number:  range: {yy>0} intercept: (1,0)  symmetry: none \begin{array}{l}\text { function } \\\text { domain: all real number: } \\\text { range: }\{\mathrm{y} \mid \mathrm{y}>0\} \\\text { intercept: }(1,0) \\\text { symmetry: none }\end{array}

C)
 function  domain: {xx>0} range: all real number  intercept: (0,1)  symmetry: origin \begin{array}{l}\text { function } \\\text { domain: }\{x \mid x>0\} \\\text { range: all real number } \\\text { intercept: }(0,1) \\\text { symmetry: origin }\end{array}

D)  not a function \text { not a function }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions