Solved

Find and Simplify the Difference Quotient of F f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h }

Question 101

Multiple Choice

Find and simplify the difference quotient of f, f(x+h) f(x) h\frac { f ( x + h ) - f ( x ) } { h } h0\mathbf { h } \neq 0 , for the function.
- Find and simplify the difference quotient of f,  \frac { f ( x + h )  - f ( x )  } { h }   \mathbf { h } \neq 0  , for the function. -  A)   \begin{array}{l} \text { function } \\ \text { domain: }\{x \mid-\pi \leq x \leq \pi\} \\ \text { range: }\{y \mid-1 \leq y \leq 1\} \\ \text { intercepts: }(-\pi, 0) ,(0,0) ,(\pi, 0)  \\ \text { symmetry: origin } \end{array}    B)  function domain: all real numbers range:   \{y \mid-1 \leq y \leq 1\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: origin  C)  function domain:   \{x \mid-1 \leq x \leq 1\}   range:   \{y \mid-\pi \leq y \leq \pi\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: none  D)  not function A)
 function  domain: {xπxπ} range: {y1y1} intercepts: (π,0) ,(0,0) ,(π,0)  symmetry: origin \begin{array}{l}\text { function } \\\text { domain: }\{x \mid-\pi \leq x \leq \pi\} \\\text { range: }\{y \mid-1 \leq y \leq 1\} \\\text { intercepts: }(-\pi, 0) ,(0,0) ,(\pi, 0) \\\text { symmetry: origin }\end{array}


B)
function
domain: all real numbers
range: {y1y1} \{y \mid-1 \leq y \leq 1\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: origin

C)
function
domain: {x1x1} \{x \mid-1 \leq x \leq 1\}
range: {yπyπ} \{y \mid-\pi \leq y \leq \pi\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: none

D) not function

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions