Solved

Use the Graph to Find the Intervals on Which It (,)( - \infty , \infty )

Question 120

Multiple Choice

Use the graph to find the intervals on which it is increasing, decreasing, or constant.
- Use the graph to find the intervals on which it is increasing, decreasing, or constant. -   A)  Increasing on  ( - \infty , \infty )   B)  Increasing on  \left( - \pi , - \frac { \pi } { 2 } \right)   and  \left( \frac { \pi } { 2 } , \pi \right)  ; decreasing on  \left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)   C)  Decreasing on  \left( - \pi , - \frac { \pi } { 2 } \right)   and  \left( \frac { \pi } { 2 } , \pi \right)  ; increasing on  \left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)   D)  Decreasing on  ( - \pi , 0 )  ; increasing on  ( 0 , \pi )


A) Increasing on (,) ( - \infty , \infty )
B) Increasing on (π,π2) \left( - \pi , - \frac { \pi } { 2 } \right) and (π2,π) \left( \frac { \pi } { 2 } , \pi \right) ; decreasing on (π2,π2) \left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
C) Decreasing on (π,π2) \left( - \pi , - \frac { \pi } { 2 } \right) and (π2,π) \left( \frac { \pi } { 2 } , \pi \right) ; increasing on (π2,π2) \left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
D) Decreasing on (π,0) ( - \pi , 0 ) ; increasing on (0,π) ( 0 , \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions