Solved

The Graph of a Piecewise-Defined Function Is Given f(x)={12x if 4<x<0x if 0<x<3f ( x ) = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x & \text { if } - 4 < x < 0 \\ x & \text { if } 0 < x < 3 \end{array} \right.

Question 265

Multiple Choice

The graph of a piecewise-defined function is given. Write a definition for the function.
- The graph of a piecewise-defined function is given. Write a definition for the function. -  A)   f ( x )  = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x & \text { if } - 4 < x < 0 \\ x & \text { if } 0 < x < 3 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x & \text { if } - 4 \leq x \leq 0 \\ x & \text { if } 0 < x \leq 3 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x & \text { if } - 4 < x < 0 \\ x & \text { if } 0 < x < 3 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } - 2 x & \text { if } - 4 \leq x \leq 0 \\ x & \text { if } 0 < x \leq 3 \end{array} \right. A) f(x) ={12x if 4<x<0x if 0<x<3f ( x ) = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x & \text { if } - 4 < x < 0 \\ x & \text { if } 0 < x < 3 \end{array} \right.
B)
f(x) ={12x if 4x0x if 0<x3f ( x ) = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x & \text { if } - 4 \leq x \leq 0 \\ x & \text { if } 0 < x \leq 3 \end{array} \right.
C)
f(x) ={12x if 4<x<0x if 0<x<3f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x & \text { if } - 4 < x < 0 \\ x & \text { if } 0 < x < 3 \end{array} \right.
D)
f(x) ={2x if 4x0x if 0<x3f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } - 4 \leq x \leq 0 \\ x & \text { if } 0 < x \leq 3 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions