Solved

Solve the Problem V(r)=π(66r)r2+23πr3V ( r ) = \pi ( 66 - r ) r ^ { 2 } + \frac { 2 } { 3 } \pi r ^ { 3 }

Question 216

Multiple Choice

Solve the problem.
-A farmer's silo is the shape of a cylinder with a hemisphere as the roof. If the height of the silo is 66 feet and the radius of the hemisphere is r feet, express the volume of the silo as a function of r. A) V(r) =π(66r) r2+23πr3V ( r ) = \pi ( 66 - r ) r ^ { 2 } + \frac { 2 } { 3 } \pi r ^ { 3 }
B) V(r) =π(66r) +43πr2\mathrm { V } ( \mathrm { r } ) = \pi ( 66 - \mathrm { r } ) + \frac { 4 } { 3 } \pi \mathrm { r } ^ { 2 }
C) V(r) =π(66r) r3+43πr2V ( r ) = \pi ( 66 - r ) r ^ { 3 } + \frac { 4 } { 3 } \pi r ^ { 2 }
D) V(r) =66πr2+83πr3V ( r ) = 66 \pi r ^ { 2 } + \frac { 8 } { 3 } \pi r ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions