Solved

Solve the Problem V(h)=100π(h10)+20003πV ( h ) = 100 \pi ( h - 10 ) + \frac { 2000 } { 3 } \pi

Question 228

Multiple Choice

Solve the problem.
-A farmer's silo is the shape of a cylinder with a hemisphere as the roof. If the radius of the hemisphere is 10 feet and the height of the silo is h feet, express the volume of the silo as a function of h. A) V(h) =100π(h10) +20003πV ( h ) = 100 \pi ( h - 10 ) + \frac { 2000 } { 3 } \pi
B) V(h) =4100π(h10) +5007πV ( h ) = 4100 \pi ( h - 10 ) + \frac { 500 } { 7 } \pi
C) V(h) =100πh+40003πh2V ( h ) = 100 \pi h + \frac { 4000 } { 3 } \pi h ^ { 2 }
D) V(h) =100π(h210) +50003πV ( h ) = 100 \pi \left( h ^ { 2 } - 10 \right) + \frac { 5000 } { 3 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions