Question 18
Multiple Choice Solve the problem. -Find the length of each side of the triangle determined by the three points P 1 , P 2 , and P 3 \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \text {, and } \mathrm { P } _ { 3 } P 1 , P 2 , and P 3 . State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both. P 1 = ( − 5 , − 4 ) , P 2 = ( − 3 , 4 ) , P 3 = ( 0 , − 1 ) \mathrm { P } _ { 1 } = ( - 5 , - 4 ) , \mathrm { P } _ { 2 } = ( - 3,4 ) , \mathrm { P } _ { 3 } = ( 0 , - 1 ) P 1 = ( − 5 , − 4 ) , P 2 = ( − 3 , 4 ) , P 3 = ( 0 , − 1 )
A) d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 5 2 \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 5 2 neither B) d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 5 2 \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 5 2 right triangle C) d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 34 \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 34 both D) d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 34 \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } d ( P 1 , P 2 ) = 2 17 ; d ( P 2 , P 3 ) = 34 ; d ( P 1 , P 3 ) = 34 isosceles triangle
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free