Solved

Use the Gauss-Jordan Method to Solve the System of Equations 2x+5y=76x15y=21\begin{array} { l } 2 x + 5 y = - 7 \\- 6 x - 15 y = 21\end{array}

Question 79

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, give the
solution with y arbitrary.
- 2x+5y=76x15y=21\begin{array} { l } 2 x + 5 y = - 7 \\- 6 x - 15 y = 21\end{array}


A) {(1,1) }\{ ( - 1 , - 1 ) \}
B) {(52y72,y) }\left\{ \left( - \frac { 5 } { 2 } y - \frac { 7 } { 2 } , y \right) \right\}
C) \varnothing
D) {(52y+72,y) \left\{ \left( - \frac { 5 } { 2 } y + \frac { 7 } { 2 } , y \right) ^ { \prime } \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions