Solved

Use the Gauss-Jordan Method to Solve the System of Equations xy+2z+w=5y+z=1zw=4\begin{array} { l } x - y + 2 z + w = 5 \\y + z = 1 \\z - w = 4\end{array}

Question 50

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- xy+2z+w=5y+z=1zw=4\begin{array} { l } x - y + 2 z + w = 5 \\y + z = 1 \\z - w = 4\end{array}


A) {(64w,3w,4+w,w) }\{ ( - 6 - 4 w , - 3 - w , 4 + w , w ) \}
B) {(10,4,5,1) }\{ ( - 10 , - 4,5,1 ) \}
C) \varnothing
D) {(6,3,4, W) }\{ ( - 6 , - 3,4 , \mathrm {~W} ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions