Solved

Use the Gauss-Jordan Method to Solve the System of Equations x+3y2zw=174x+y+z+2w=113xy3z2w=1xy3z2w=7\begin{array} { l } x + 3 y - 2 z - w = 17 \\4 x + y + z + 2 w = 11 \\- 3 x - y - 3 z - 2 w = - 1 \\x - y - 3 z - 2 w = 7\end{array}

Question 332

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- x+3y2zw=174x+y+z+2w=113xy3z2w=1xy3z2w=7\begin{array} { l } x + 3 y - 2 z - w = 17 \\4 x + y + z + 2 w = 11 \\- 3 x - y - 3 z - 2 w = - 1 \\x - y - 3 z - 2 w = 7\end{array}


A) {(17,11,1,7) }\{ ( 17,11 , - 1,7 ) \}
B) {(1,5,8,4) }\{ ( 1,5 , - 8,4 ) \}
C) {(2+w,32w,4+2w,w) }\{ ( 2 + \mathrm { w } , 3 - 2 \mathrm { w } , - 4 + 2 \mathrm { w } , \mathrm { w } ) \}
D) {(2,3,4,2) }\{ ( 2,3 , - 4,2 ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions