Solved

Find All Cube Roots of the Complex Number 2+2i32 + 2 i \sqrt { 3 }

Question 30

Multiple Choice

Find all cube roots of the complex number. Leave answers in trigonometric form.
- 2+2i32 + 2 i \sqrt { 3 }


A) 43cis30,43cis150,43cis270\sqrt [ 3 ] { 4 } \operatorname { cis } 30 ^ { \circ } , \sqrt [ 3 ] { 4 } \operatorname { cis } 150 ^ { \circ } , \sqrt [ 3 ] { 4 } \operatorname { cis } 270 ^ { \circ }
B) 43cis20,43cis140,43cis260\sqrt [ 3 ] { 4 } \operatorname { cis } 20 ^ { \circ } , \sqrt [ 3 ] { 4 } \operatorname { cis } 140 ^ { \circ } , \sqrt [ 3 ] { 4 } \operatorname { cis } 260 ^ { \circ }
C) 2cis20,2cis140,2cis260\sqrt { 2 } \operatorname { cis } 20 ^ { \circ } , \sqrt { 2 } \operatorname { cis } 140 ^ { \circ } , \sqrt { 2 } \operatorname { cis } 260 ^ { \circ }
D) 4cis20,4cis140,4cis260\sqrt { 4 } \operatorname { cis } 20 ^ { \circ } , \sqrt { 4 } \operatorname { cis } 140 ^ { \circ } , \sqrt { 4 } \operatorname { cis } 260 ^ { \circ }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions