Solved

Solve the Problem T(x)=37sin[2π365(x101)]+25T ( x ) = 37 \sin \left[ \frac { 2 \pi } { 365 } ( x - 101 ) \right] + 25

Question 217

Multiple Choice

Solve the problem.
-The temperature in Fairbanks is approximated by
T(x) =37sin[2π365(x101) ]+25T ( x ) = 37 \sin \left[ \frac { 2 \pi } { 365 } ( x - 101 ) \right] + 25
where T(x) \mathrm { T } ( \mathrm { x } ) is the temperature on day x\mathrm { x } , with x=1\mathrm { x } = 1 corresponding to Jan. 1 and x=365\mathrm { x } = 365 corresponding to Dec. 31. Estimate the temperature on day 230 .


A) 5454 ^ { \circ }
B) 25- 25 ^ { \circ }
C) 284284 ^ { \circ }
D) 2929 ^ { \circ }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions