Solved

Use the Properties of Logarithms to Rewrite the Expression loga(4x3y)\log _ { a } \left( 4 x ^ { 3 } y \right)

Question 252

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers.
- loga(4x3y) \log _ { a } \left( 4 x ^ { 3 } y \right)


A) loga(4+x3+y) \log _ { a } \left( 4 + x ^ { 3 } + y \right)
B) loga4+(logax) 3+logay\log _ { a } 4 + \left( \log _ { a } x \right) ^ { 3 } + \log _ { a } y
C) (loga4) (logax) (logay) \left( \log _ { a } 4 \right) \left( \log _ { a } x \right) \left( \log _ { a } y \right)
D) loga4+3logax+logay\log _ { a } 4 + 3 \log _ { a } x + \log _ { a } y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions