Solved

Use the Properties of Logarithms to Rewrite the Expression log3(x4y56)\log _ { 3 } \left( \frac { x ^ { 4 } y ^ { 5 } } { 6 } \right)

Question 142

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers.
- log3(x4y56) \log _ { 3 } \left( \frac { x ^ { 4 } y ^ { 5 } } { 6 } \right)


A) 4log3x+5log3ylog364 \log _ { 3 } x + 5 \log _ { 3 } y - \log _ { 3 } 6
B) (log3x) 4+(log3y) 5log36\left( \log _ { 3 } x \right) ^ { 4 } + \left( \log _ { 3 } y \right) ^ { 5 } - \log _ { 3 } 6
C) (4log3x) (5log3y) ÷log36\left( 4 \log _ { 3 } x \right) \left( 5 \log _ { 3 } y \right) \div \log _ { 3 } 6
D) 4log3x+5log3y+log364 \log _ { 3 } x + 5 \log 3 y + \log _ { 3 } 6

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions