Solved

Use the Properties of Logarithms to Rewrite the Expression logb4x3z8\log b \sqrt { \frac { 4 x ^ { 3 } } { z ^ { 8 } } }

Question 100

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers.
- logb4x3z8\log b \sqrt { \frac { 4 x ^ { 3 } } { z ^ { 8 } } }


A) logb232logbx4logbz\log _ { b } 2 \cdot \frac { 3 } { 2 } \log _ { b } x - 4 \log _ { b } z
B) (logb2++32logbx) ÷4logbz\left( \log _ { b } 2 + + \frac { 3 } { 2 } \log _ { b } x \right) \div 4 \log _ { b } z
C) logb2+32logbx4logbz\log _ { b } 2 + \frac { 3 } { 2 } \log _ { b } x - 4 \log _ { b } z
D) logb4+logbx3logbz8\sqrt{\log _{b} 4}+\sqrt{\log _{b} x^{3}}-\sqrt{\log _{b} z^{8}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions