Solved

Solve for the Indicated Variable A=Bs1(1+z)t for tA = \frac { B s } { 1 - ( 1 + z ) ^ { - t ^ { \prime } } } \text { for } t

Question 237

Multiple Choice

Solve for the indicated variable.
- A=Bs1(1+z) t for tA = \frac { B s } { 1 - ( 1 + z ) ^ { - t ^ { \prime } } } \text { for } t


A) t=lnAln(ABs) ln(1+z) t = \frac { \ln A - \ln ( A - B s ) } { \ln ( 1 + z ) }
B) t=lnBln[(AAs) (1z) ]t = \frac { \ln B } { \ln [ ( A - A s ) ( 1 - z ) ] }
C) t=lnB(AAs) (1+z) t = \ln \frac { B } { ( A - A s ) ( 1 + z ) }
D) t=lnA(ABs) (1+z) t = \ln \frac { A } { ( A - B s ) ( 1 + z ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions