Solved

Give a Rule for the Piecewise-Defined Function f(x)={4 if x04 if x>0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - 4 & \text { if } x > 0 \end{array} ; \right.

Question 507

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - 4 & \text { if } x > 0 \end{array} ; \right.  Domain:  ( - \infty , \infty )  , Range:  \{ - 4,4 \}  B)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 & \text { if } x \geq 0 \end{array} \right. ; Domain:  ( - \infty , \infty )  , Range:  \{ - 4,4 \}  C)   f ( x )  = \left\{ \begin{array} { l l } 4 x & \text { if } x \leq 0 \\ - 4 x & \text { if } x > 0 \end{array} ; \right.  Domain:  \{ - 4,4 \} , Range:  ( - \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } - 4 & \text { if } x \leq 0 \\ 4 & \text { if } x > 0 \end{array} \right. ; Domain:  \{ - 4,4 \} , Range:  ( - \infty , \infty )


A) f(x) ={4 if x04 if x>0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - 4 & \text { if } x > 0 \end{array} ; \right. Domain: (,) ( - \infty , \infty ) , Range: {4,4}\{ - 4,4 \}
B) f(x) ={4 if x<04 if x0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 & \text { if } x \geq 0 \end{array} \right. ; Domain: (,) ( - \infty , \infty ) , Range: {4,4}\{ - 4,4 \}
C) f(x) ={4x if x04x if x>0;f ( x ) = \left\{ \begin{array} { l l } 4 x & \text { if } x \leq 0 \\ - 4 x & \text { if } x > 0 \end{array} ; \right. Domain: {4,4}\{ - 4,4 \} , Range: (,) ( - \infty , \infty )
D) f(x) ={4 if x04 if x>0f ( x ) = \left\{ \begin{array} { l l } - 4 & \text { if } x \leq 0 \\ 4 & \text { if } x > 0 \end{array} \right. ; Domain: {4,4}\{ - 4,4 \} , Range: (,) ( - \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions