Solved

Give a Rule for the Piecewise-Defined Function f(x)={5 if x<34 if x4f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 3 \\ 4 & \text { if } x \geq 4 \end{array} \right.

Question 353

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 3 \\ 4 & \text { if } x \geq 4 \end{array} \right. ; Domain:  ( - \infty - 3 )  \cup [ 4 , \infty )  , Range:  \{ - 5,4 \}  B)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 3 \\ 4 & \text { if } x > 4 \end{array} ; \right.  Domain:  ( - \infty - 3 ] \cup ( 4 , \infty )  , Range:  \{ - 5,4 \}  C)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 3 \\ 4 & \text { if } x > 4 \end{array} ; \right.  Domain:  \{ - 5,4 \} , Range:  ( - \infty - 3 ] \cup ( 4 , \infty )   D)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 3 \\ 4 & \text { if } x \geq 4 \end{array} \right. ; Domain:  \{ - 5,4 \} , Range:  ( - \infty - 3 )  \cup [ 4 , \infty )


A) f(x) ={5 if x<34 if x4f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 3 \\ 4 & \text { if } x \geq 4 \end{array} \right. ; Domain: (3) [4,) ( - \infty - 3 ) \cup [ 4 , \infty ) , Range: {5,4}\{ - 5,4 \}
B) f(x) ={5 if x34 if x>4;f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 3 \\ 4 & \text { if } x > 4 \end{array} ; \right. Domain: (3](4,) ( - \infty - 3 ] \cup ( 4 , \infty ) , Range: {5,4}\{ - 5,4 \}
C) f(x) ={5 if x34 if x>4;f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 3 \\ 4 & \text { if } x > 4 \end{array} ; \right. Domain: {5,4}\{ - 5,4 \} , Range: (3](4,) ( - \infty - 3 ] \cup ( 4 , \infty )
D) f(x) ={5 if x<34 if x4f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 3 \\ 4 & \text { if } x \geq 4 \end{array} \right. ; Domain: {5,4}\{ - 5,4 \} , Range: (3) [4,) ( - \infty - 3 ) \cup [ 4 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions