Solved

It Can Be Shown That (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots

Question 207

Essay

It can be shown that (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots is true for any real number n (not just positive
integer values) and any real number x, where x<1| x | < 1 Use this series to approximate the given number to the nearest
thousandth.
- 4+417+4(17)2++4(17)n1=4(1(17)n)1174 + 4 \cdot \frac { 1 } { 7 } + 4 \cdot \left( \frac { 1 } { 7 } \right) ^ { 2 } + \ldots + 4 \cdot \left( \frac { 1 } { 7 } \right) ^ { n - 1 } = \frac { 4 \left( 1 - \left( \frac { 1 } { 7 } \right) ^ { n } \right) } { 1 - \frac { 1 } { 7 } }

Correct Answer:

verifed

Verified

Answers will vary. One possible proof fo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions