Solved

It Can Be Shown That (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots

Question 197

Essay

It can be shown that (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots is true for any real number n (not just positive
integer values) and any real number x, where x<1| x | < 1 Use this series to approximate the given number to the nearest
thousandth.
- 46+57+68++(n+3)(n+5)=n(2n2+27n+115)64 \cdot 6 + 5 \cdot 7 + 6 \cdot 8 + \ldots + ( n + 3 ) ( n + 5 ) = \frac { n \left( 2 n ^ { 2 } + 27 n + 115 \right) } { 6 }

Correct Answer:

verifed

Verified

Answers will vary. One possible proof fo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions