Solved

Rationalize the Denominator xy2x+3y\frac { \sqrt { x } - \sqrt { y } } { \sqrt { 2 x } + \sqrt { 3 y } }

Question 290

Multiple Choice

Rationalize the denominator. Assume that all variables represent nonnegative numbers and that the denominator is not
zero.
- xy2x+3y\frac { \sqrt { x } - \sqrt { y } } { \sqrt { 2 x } + \sqrt { 3 y } }


A) x23xy2xy+y32x3y\frac { x \sqrt { 2 } - \sqrt { 3 x y } - \sqrt { 2 x y } + y \sqrt { 3 } } { 2 x - 3 y }
B) 2x5xy+3y2x+3y\frac { \sqrt { 2 x } - \sqrt { 5 x y } + \sqrt { 3 y } } { 2 x + 3 y }
C) x23xy2xy+y32x+3y\frac { x \sqrt { 2 } - \sqrt { 3 x y } - \sqrt { 2 x y } + y \sqrt { 3 } } { 2 x + 3 y }
D) 2x5xy+3y2x3y\frac { \sqrt { 2 x } - \sqrt { 5 x y } + \sqrt { 3 y } } { 2 x - 3 y }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions