Solved

The Model E(y)=β0+β1x1+β2x2+β3x3+β4x4E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \beta _ { 4 } x _ { 4 }

Question 76

Essay

The model E(y)=β0+β1x1+β2x2+β3x3+β4x4E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \beta _ { 4 } x _ { 4 } was used to relate E(y)E ( y ) to a single qualitative variable, where
x1"{1 if level 2 0 if not x2"{1 if level 3 0 if not x _ { 1 } " \left\{ \begin{array} { l l } 1 & \text { if level 2 } \\ 0 & \text { if not } \end{array} \quad x _ { 2 } " \left\{ \begin{array} { l l } 1 & \text { if level 3 } \\ 0 & \text { if not } \end{array} \right. \right.
x3"{1 if level 40 if not x4"{1 if level 50 if not x _ { 3 } " \left\{ \begin{array} { l l } 1 & \text { if level } 4 \\ 0 & \text { if not } \end{array} \quad x _ { 4 } " \left\{ \begin{array} { l l } 1 & \text { if level } 5 \\ 0 & \text { if not } \end{array} \right. \right.
This model was fit to n=40n = 40 data points and the following result was obtained:
y^=14.5+3x14x2+10x3+8x4\hat { y } = 14.5 + 3 x _ { 1 } - 4 x _ { 2 } + 10 x _ { 3 } + 8 x _ { 4 } a. Use the least squares prediction equation to find the estimate of E(y)for each level of
the qualitative variable.
b. Specify the null and alternative hypothesis you would use to test whether E(y)is the
same for all levels of the independent variable.

Correct Answer:

verifed

Verified

a. level 1: 14.5; level 2: blured image; l...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions