Solved

Consider the Model Where x1x _ { 1 } Is a Quantitative Variable And

Question 118

Multiple Choice

Consider the model y=β0+β1x1+β2x12+β3x2+β4x3+β5x1x2+β6x1x3+β7x12x2+β812x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 1 } ^ { 2 } + \beta _ { 3 } x _ { 2 } + \beta _ { 4 } x _ { 3 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \beta _ { 6 } x _ { 1 } x _ { 3 } + \beta _ { 7 } x _ { 1 } ^ { 2 } x _ { 2 } + \beta _ { 8 } 1 ^ { 2 } x _ { 3 } + \varepsilon
where x1x _ { 1 } is a quantitative variable and x2x _ { 2 } and x3x _ { 3 } are dummy variables describing a qualitative variable at three levels using the coding scheme
x2={1 if level 20 otherwise x3={1 if level 30 otherwise x _ { 2 } = \left\{ \begin{array} { l l } 1 & \text { if level } 2 \\ 0 & \text { otherwise } \end{array} \quad x _ { 3 } = \left\{ \begin{array} { l l } 1 & \text { if level } 3 \\ 0 & \text { otherwise } \end{array} \right. \right.
The resulting least squares prediction equation is
y^=8.81.1x1+3.2x12+1.6x24.4x3+.02x1x2+1.3x1x3+.01x12x2.06x12x3\hat { y } = 8.8 - 1.1 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 } + 1.6 x _ { 2 } - 4.4 x _ { 3 } + .02 x _ { 1 } x _ { 2 } + 1.3 x _ { 1 } x _ { 3 } + .01 x _ { 1 } ^ { 2 } x _ { 2 } - .06 x _ { 1 } ^ { 2 } x _ { 3 }
What is the equation of the response curve for E(y) E ( y ) when x2=0x _ { 2 } = 0 and x3=0x _ { 3 } = 0 ?


A) y=8.81.6x24.4x3y = 8.8 - 1.6 x _ { 2 } - 4.4 x _ { 3 }
B) y=8.8.22x1+3.15x12y = 8.8 - .22 x _ { 1 } + 3.15 x _ { 1 } ^ { 2 }
C) y=8.81.3x1+3.2x12y = 8.8 - 1.3 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 }
D) y=8.81.1x1+3.2x12y = 8.8 - 1.1 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions