Solved

Sketch the Graph of the Equation x2+y2=9x^{2}+y^{2}=9 A) Center (32,0)\left( \frac { 3 } { 2 } , 0 \right)

Question 93

Multiple Choice

Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and
radius.
- x2+y2=9x^{2}+y^{2}=9
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and radius. - x^{2}+y^{2}=9    A)  center  \left( \frac { 3 } { 2 } , 0 \right)  ; radius  = \frac { 3 } { 2 }    B)  center  \left( 0 , \frac { 3 } { 2 } \right)  ;  radius  = \frac { 3 } { 2 }    C)  center  ( 0,0 )  ; radius  = 3    D)  center  ( 0,0 )  ; radius  = \sqrt { 3 }


A) center (32,0) \left( \frac { 3 } { 2 } , 0 \right) ; radius =32= \frac { 3 } { 2 }
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and radius. - x^{2}+y^{2}=9    A)  center  \left( \frac { 3 } { 2 } , 0 \right)  ; radius  = \frac { 3 } { 2 }    B)  center  \left( 0 , \frac { 3 } { 2 } \right)  ;  radius  = \frac { 3 } { 2 }    C)  center  ( 0,0 )  ; radius  = 3    D)  center  ( 0,0 )  ; radius  = \sqrt { 3 }
B) center (0,32) ;\left( 0 , \frac { 3 } { 2 } \right) ; radius =32= \frac { 3 } { 2 }
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and radius. - x^{2}+y^{2}=9    A)  center  \left( \frac { 3 } { 2 } , 0 \right)  ; radius  = \frac { 3 } { 2 }    B)  center  \left( 0 , \frac { 3 } { 2 } \right)  ;  radius  = \frac { 3 } { 2 }    C)  center  ( 0,0 )  ; radius  = 3    D)  center  ( 0,0 )  ; radius  = \sqrt { 3 }
C) center (0,0) ( 0,0 ) ; radius =3= 3
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and radius. - x^{2}+y^{2}=9    A)  center  \left( \frac { 3 } { 2 } , 0 \right)  ; radius  = \frac { 3 } { 2 }    B)  center  \left( 0 , \frac { 3 } { 2 } \right)  ;  radius  = \frac { 3 } { 2 }    C)  center  ( 0,0 )  ; radius  = 3    D)  center  ( 0,0 )  ; radius  = \sqrt { 3 }
D) center (0,0) ( 0,0 ) ; radius =3= \sqrt { 3 }
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center and radius. - x^{2}+y^{2}=9    A)  center  \left( \frac { 3 } { 2 } , 0 \right)  ; radius  = \frac { 3 } { 2 }    B)  center  \left( 0 , \frac { 3 } { 2 } \right)  ;  radius  = \frac { 3 } { 2 }    C)  center  ( 0,0 )  ; radius  = 3    D)  center  ( 0,0 )  ; radius  = \sqrt { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions