Solved

For the Given Functions F and G, Find the Requested f(x)=6x+1;g(x)=3x5f ( x ) = 6 x + 1 ; g ( x ) = 3 x - 5 \quad

Question 148

Multiple Choice

For the given functions f and g, find the requested function.
- f(x) =6x+1;g(x) =3x5f ( x ) = 6 x + 1 ; g ( x ) = 3 x - 5 \quad Find (fg) (x) \left( \frac { f } { g } \right) ( x )


A) (fg) (x) =3x56x+1\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 3 \mathrm { x } - 5 } { 6 \mathrm { x } + 1 } , where x16x \neq - \frac { 1 } { 6 }
B) (fg) (x) =3x+56x+1\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 3 \mathrm { x } + 5 } { 6 \mathrm { x } + 1 } , where x16x \neq - \frac { 1 } { 6 }
C) (fg) (x) =6x+13x+5\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 6 \mathrm { x } + 1 } { 3 \mathrm { x } + 5 } , where x53x \neq - \frac { 5 } { 3 }
D) (fg) (x) =6x+13x5\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { 6 \mathrm { x } + 1 } { 3 \mathrm { x } - 5 } , where x53x \neq \frac { 5 } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions