Solved

Determine Whether the Function Is One-To-One f(x)=32xf ( x ) = 3 - 2 x

Question 233

Multiple Choice

Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines
the inverse function of the given function.
- f(x) =32xf ( x ) = 3 - 2 x


A) one-to-one; f1(x) =x+32\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { - \mathrm { x } + 3 } { 2 }
B) one-to-one; f1(x) =132x\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 1 } { 3 - 2 \mathrm { x } }
C) one-to-one; f1(x) =x32\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { \mathrm { x } - 3 } { 2 }
D) not one-to-one

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions