Solved

Solve the Inequality xx+42\frac { x } { x + 4 } \geq 2

Question 128

Multiple Choice

Solve the inequality. Graph the solution set and write the solution set in interval notation.
- xx+42\frac { x } { x + 4 } \geq 2
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - \frac { x } { x + 4 } \geq 2     A)  (-\infty,-4)  \cup[0, \infty)     B)   ( - \infty , - 8 ] \cup ( - 4 , \infty )     C)  ( - 4,8 ]    D)   [ - 8 , - 4 )


A) (,4) [0,) (-\infty,-4) \cup[0, \infty)
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - \frac { x } { x + 4 } \geq 2     A)  (-\infty,-4)  \cup[0, \infty)     B)   ( - \infty , - 8 ] \cup ( - 4 , \infty )     C)  ( - 4,8 ]    D)   [ - 8 , - 4 )
B) (,8](4,) ( - \infty , - 8 ] \cup ( - 4 , \infty )
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - \frac { x } { x + 4 } \geq 2     A)  (-\infty,-4)  \cup[0, \infty)     B)   ( - \infty , - 8 ] \cup ( - 4 , \infty )     C)  ( - 4,8 ]    D)   [ - 8 , - 4 )
C) (4,8]( - 4,8 ]
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - \frac { x } { x + 4 } \geq 2     A)  (-\infty,-4)  \cup[0, \infty)     B)   ( - \infty , - 8 ] \cup ( - 4 , \infty )     C)  ( - 4,8 ]    D)   [ - 8 , - 4 )
D) [8,4) [ - 8 , - 4 )
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - \frac { x } { x + 4 } \geq 2     A)  (-\infty,-4)  \cup[0, \infty)     B)   ( - \infty , - 8 ] \cup ( - 4 , \infty )     C)  ( - 4,8 ]    D)   [ - 8 , - 4 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions