Solved

Solve
-If the Three Lengths of the Sides of a Triangle

Question 283

Multiple Choice

Solve.
-If the three lengths of the sides of a triangle are known, Heron's formula can be used to find its area. and cc are the three lengths of the sides, Heron's formula for area is:
A=s(sa) (sb) (sc) A = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }
where ss is half the perimeter of the triangle, or s=12(a+b+c) s = \frac { 1 } { 2 } ( a + b + c ) .
Use this formula to find the area of the triangle if a=9 cm, b=11 cma = 9 \mathrm {~cm} , \mathrm {~b} = 11 \mathrm {~cm} and c=16 cmc = 16 \mathrm {~cm} .
 Solve. -If the three lengths of the sides of a triangle are known, Heron's formula can be used to find its area. and  c  are the three lengths of the sides, Heron's formula for area is:  A = \sqrt { s ( s - a )  ( s - b )  ( s - c )  }  where  s  is half the perimeter of the triangle, or  s = \frac { 1 } { 2 } ( a + b + c )  . Use this formula to find the area of the triangle if  a = 9 \mathrm {~cm} , \mathrm {~b} = 11 \mathrm {~cm}  and  c = 16 \mathrm {~cm} .    A)   3 \sqrt { 14 } \mathrm { sq } \mathrm { cm }  B)   18 \sqrt { 7 } \mathrm { sq } \mathrm { cm }  C)   18 \sqrt { 14 } \mathrm { sq } \mathrm { cm }  D)   180 \sqrt { 15 } \mathrm { sq } \mathrm { cm }  , b,


A) 314sqcm3 \sqrt { 14 } \mathrm { sq } \mathrm { cm }
B) 187sqcm18 \sqrt { 7 } \mathrm { sq } \mathrm { cm }
C) 1814sqcm18 \sqrt { 14 } \mathrm { sq } \mathrm { cm }
D) 18015sqcm180 \sqrt { 15 } \mathrm { sq } \mathrm { cm } , b,

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions