Solved

Solve
-If the Three Lengths of the Sides of a Triangle

Question 21

Multiple Choice

Solve.
-If the three lengths of the sides of a triangle are known, Heron's formula can be used to find its area. and cc are the three lengths of the sides, Heron's formula for area is:
A=s(sa) (sb) (sc) A = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }
where ss is half the perimeter of the triangle, or s=12(a+b+c) s = \frac { 1 } { 2 } ( a + b + c ) .
Use this formula to approximate the area of the triangle to two decimal places, if necessary, when a cm,b=11 cm\mathrm { cm } , \mathrm { b } = 11 \mathrm {~cm} and c=16 cm\mathrm { c } = 16 \mathrm {~cm} .
 Solve. -If the three lengths of the sides of a triangle are known, Heron's formula can be used to find its area. and  c  are the three lengths of the sides, Heron's formula for area is:  A = \sqrt { s ( s - a )  ( s - b )  ( s - c )  }  where  s  is half the perimeter of the triangle, or  s = \frac { 1 } { 2 } ( a + b + c )  . Use this formula to approximate the area of the triangle to two decimal places, if necessary, when a  \mathrm { cm } , \mathrm { b } = 11 \mathrm {~cm}  and  \mathrm { c } = 16 \mathrm {~cm} .    A)   47.62 \mathrm { sq } \mathrm { cm }  B)   697.14 \mathrm { sq } \mathrm { cm }  C)   9.76 \mathrm { sq } \mathrm { cm }  D)   11.22 \mathrm { sq } \mathrm { cm }  , b,


A) 47.62sqcm47.62 \mathrm { sq } \mathrm { cm }
B) 697.14sqcm697.14 \mathrm { sq } \mathrm { cm }
C) 9.76sqcm9.76 \mathrm { sq } \mathrm { cm }
D) 11.22sqcm11.22 \mathrm { sq } \mathrm { cm } , b,

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions