Solved

Solve Using the Addition Principle 7<15- 7 < - 15 A) {ff8}\{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}

Question 99

Multiple Choice

Solve using the addition principle. Graph and write set-builder notation for the answer.
-f 7<15- 7 < - 15
 Solve using the addition principle. Graph and write set-builder notation for the answer. -f  - 7 < - 15    A)   \{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}    B)   \{ f \mid f > - 8 \}    C)   \{ \mathrm { f } \mid \mathrm { f } < - 8 \}    D)   \{ f \mid f \geq - 8 \}


A) {ff8}\{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. -f  - 7 < - 15    A)   \{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}    B)   \{ f \mid f > - 8 \}    C)   \{ \mathrm { f } \mid \mathrm { f } < - 8 \}    D)   \{ f \mid f \geq - 8 \}
B) {ff>8}\{ f \mid f > - 8 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. -f  - 7 < - 15    A)   \{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}    B)   \{ f \mid f > - 8 \}    C)   \{ \mathrm { f } \mid \mathrm { f } < - 8 \}    D)   \{ f \mid f \geq - 8 \}
C) {ff<8}\{ \mathrm { f } \mid \mathrm { f } < - 8 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. -f  - 7 < - 15    A)   \{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}    B)   \{ f \mid f > - 8 \}    C)   \{ \mathrm { f } \mid \mathrm { f } < - 8 \}    D)   \{ f \mid f \geq - 8 \}
D) {ff8}\{ f \mid f \geq - 8 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. -f  - 7 < - 15    A)   \{ \mathrm { f } \mid \mathrm { f } \leq - 8 \}    B)   \{ f \mid f > - 8 \}    C)   \{ \mathrm { f } \mid \mathrm { f } < - 8 \}    D)   \{ f \mid f \geq - 8 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions