Solved

Solve Using the Addition Principle x+211811x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }

Question 58

Multiple Choice

Solve using the addition principle. Graph and write set-builder notation for the answer.
- x+211811x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }    A)   \left\{ x \mid x > \frac { 3 } { 11 } \right\}    B)   \left\{ x \mid x \geq \frac { 6 } { 11 } \right\}    C)   \left\{ x \mid x < \frac { 3 } { 11 } \right\}    D)   \left\{ x \mid x \leq \frac { 6 } { 11 } \right\}


A) {xx>311}\left\{ x \mid x > \frac { 3 } { 11 } \right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }    A)   \left\{ x \mid x > \frac { 3 } { 11 } \right\}    B)   \left\{ x \mid x \geq \frac { 6 } { 11 } \right\}    C)   \left\{ x \mid x < \frac { 3 } { 11 } \right\}    D)   \left\{ x \mid x \leq \frac { 6 } { 11 } \right\}
B) {xx611}\left\{ x \mid x \geq \frac { 6 } { 11 } \right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }    A)   \left\{ x \mid x > \frac { 3 } { 11 } \right\}    B)   \left\{ x \mid x \geq \frac { 6 } { 11 } \right\}    C)   \left\{ x \mid x < \frac { 3 } { 11 } \right\}    D)   \left\{ x \mid x \leq \frac { 6 } { 11 } \right\}
C) {xx<311}\left\{ x \mid x < \frac { 3 } { 11 } \right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }    A)   \left\{ x \mid x > \frac { 3 } { 11 } \right\}    B)   \left\{ x \mid x \geq \frac { 6 } { 11 } \right\}    C)   \left\{ x \mid x < \frac { 3 } { 11 } \right\}    D)   \left\{ x \mid x \leq \frac { 6 } { 11 } \right\}
D) {xx611}\left\{ x \mid x \leq \frac { 6 } { 11 } \right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x + \frac { 2 } { 11 } \geq \frac { 8 } { 11 }    A)   \left\{ x \mid x > \frac { 3 } { 11 } \right\}    B)   \left\{ x \mid x \geq \frac { 6 } { 11 } \right\}    C)   \left\{ x \mid x < \frac { 3 } { 11 } \right\}    D)   \left\{ x \mid x \leq \frac { 6 } { 11 } \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions