Solved

Determine Whether the Given Function Is One-To-One f(x)=x3+1f ( x ) = x ^ { 3 } + 1

Question 72

Multiple Choice

Determine whether the given function is one-to-one. If so, find a formula for the inverse.
- f(x) =x3+1f ( x ) = x ^ { 3 } + 1


A) f1(x) =x+13\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 1 }
B) Not a one-to-one function
C) f1(x) =x13f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 1 }
D) f1(x) =x31\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } } - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions