Solved

Use the Equation of the Parabola in Standard Form x=a(yk)2+hx = a ( y - k ) ^ { 2 } + h

Question 13

Multiple Choice

Use the equation of the parabola in standard form x=a(yk) 2+hx = a ( y - k ) ^ { 2 } + h to determine the coordinates of the vertex and the equation of the axis of symmetry (complete the square if necessary) . Then graph The parabola. x=y24y+2x = y ^ { 2 } - 4 y + 2


A) vertex (2,2) ( - 2,2 ) ;
Line of symmetry y=2y = 2
 Use the equation of the parabola in standard form  x = a ( y - k )  ^ { 2 } + h  to determine the coordinates of the vertex and the equation of the axis of symmetry (complete the square if necessary) . Then graph The parabola.  x = y ^ { 2 } - 4 y + 2  A)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2     B)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2      C)  vertex  ( - 2 , - 2 )  ; Line of symmetry  y = - 2     D)  vertex  ( - 2 , - 2 )  ;  Line of symmetry  y = - 2

B) vertex (2,2) ( - 2,2 ) ;
Line of symmetry y=2y = 2
 Use the equation of the parabola in standard form  x = a ( y - k )  ^ { 2 } + h  to determine the coordinates of the vertex and the equation of the axis of symmetry (complete the square if necessary) . Then graph The parabola.  x = y ^ { 2 } - 4 y + 2  A)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2     B)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2      C)  vertex  ( - 2 , - 2 )  ; Line of symmetry  y = - 2     D)  vertex  ( - 2 , - 2 )  ;  Line of symmetry  y = - 2


C) vertex (2,2) ( - 2 , - 2 ) ;
Line of symmetry y=2y = - 2
 Use the equation of the parabola in standard form  x = a ( y - k )  ^ { 2 } + h  to determine the coordinates of the vertex and the equation of the axis of symmetry (complete the square if necessary) . Then graph The parabola.  x = y ^ { 2 } - 4 y + 2  A)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2     B)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2      C)  vertex  ( - 2 , - 2 )  ; Line of symmetry  y = - 2     D)  vertex  ( - 2 , - 2 )  ;  Line of symmetry  y = - 2

D) vertex (2,2) ( - 2 , - 2 ) ;
Line of symmetry y=2y = - 2
 Use the equation of the parabola in standard form  x = a ( y - k )  ^ { 2 } + h  to determine the coordinates of the vertex and the equation of the axis of symmetry (complete the square if necessary) . Then graph The parabola.  x = y ^ { 2 } - 4 y + 2  A)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2     B)  vertex  ( - 2,2 )  ; Line of symmetry  y = 2      C)  vertex  ( - 2 , - 2 )  ; Line of symmetry  y = - 2     D)  vertex  ( - 2 , - 2 )  ;  Line of symmetry  y = - 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions