Solved

The Following MINITAB Output Display Presents the Results of a Hypothesis

Question 12

Multiple Choice

The following MINITAB output display presents the results of a hypothesis test for the difference μ1μ2\mu _ { 1 } - \mu _ { 2 } between two population means.
 Two-sample T for X1 vs X2  N  Mean  StDev  SE Mean  A 1266.02122.0146.355 B 840.64927.3379.665\begin{array}{rrrrc}\hline{\text { Two-sample T for X1 vs X2 }} \\& \text { N } & \text { Mean } & \text { StDev } & \text { SE Mean } \\\text { A } & 12 & 66.021 & 22.014 & 6.355 \\\text { B } & 8 & 40.649 & 27.337 & 9.665\end{array}

Difference =mu(X1) mu(X2) = \operatorname { mu } ( \mathrm { X } 1 ) - \mathrm { mu } ( \mathrm { X } 2 )
Estimate for difference: 25.37225.372
95%95 \% CI for difference: (2.700,48.044) ( 2.700,48.044 )

T\mathrm { T } -Test of difference =0(= 0 ( vs not =) :TValue=2.193456= ) : \quad \mathrm { T } - \mathrm { Value } = 2.193456
P-Value =0.04706DF=13= 0.04706 \mathrm { DF } = 13

Can you reject H0H _ { 0 } rejected at the α=0.10\alpha = 0.10 level?


A) No
B) Yes

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions