Solved

When Testing for a Difference Between the Means of a Treatment

Question 35

Essay

When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.04 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1) comes from a population with a mean that is different from the mean for the placebo population?
Explain.
 t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 171.6392168.77183 Known Variance 47.5167241.082934 Observations 50505 Hypothesized Mean Difference 06t2.1540577 P(T>=t) one-tail 0.01588 TCritical one-tail 1.6448539 P(T>=t) two-tail 0.031610t Critical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 171.6392 & 168.7718 \\\hline 3 & \text { Known Variance } & 47.51672 & 41.08293 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \mathrm { t } & 2.154057 & \\\hline 7 & \text { P(T>=t) one-tail } & 0.0158 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T>=t) two-tail } & 0.0316 & \\\hline 10 & \mathrm { t } \text { Critical two-tail } & 1.959961 & \\\hline\end{array}

Correct Answer:

verifed

Verified

Yes, the P-value for a two-tai...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions